#include <stdio.h>
#include <stdlib.h>
// Structure for a node in the AVL tree
struct Node {
int data;
struct Node* left;
struct Node* right;
int height; // Height of the node
};
// Function to create a new node
struct Node* createNode(int data) {
struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
if (newNode == NULL) {
printf("Memory allocation error\n");
exit(1);
}
newNode->data = data;
newNode->left = newNode->right = NULL;
newNode->height = 1; // Initialize height as 1 for a new node
return newNode;
}
// Function to calculate the height of a node
int getHeight(struct Node* node) {
if (node == NULL)
return 0;
return node->height;
}
// Function to find the maximum of two integers
int max(int a, int b) {
return (a > b) ? a : b;
}
// Function to perform right rotation
struct Node* rightRotate(struct Node* y) {
struct Node* x = y->left;
struct Node* T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(getHeight(y->left), getHeight(y->right)) + 1;
x->height = max(getHeight(x->left), getHeight(x->right)) + 1;
return x;
}
// Function to perform left rotation
struct Node* leftRotate(struct Node* x) {
struct Node* y = x->right;
struct Node* T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(getHeight(x->left), getHeight(x->right)) + 1;
y->height = max(getHeight(y->left), getHeight(y->right)) + 1;
return y;
}
// Function to get the balance factor of a node
int getBalanceFactor(struct Node* node) {
if (node == NULL)
return 0;
return getHeight(node->left) - getHeight(node->right);
}
// Function to insert a node into the AVL tree
struct Node* insert(struct Node* root, int data) {
if (root == NULL)
return createNode(data);
if (data < root->data)
root->left = insert(root->left, data);
else if (data > root->data)
root->right = insert(root->right, data);
else
return root; // Duplicate keys are not allowed
// Update height of current node
root->height = 1 + max(getHeight(root->left), getHeight(root->right));
// Get the balance factor to check if rotation is needed
int balance = getBalanceFactor(root);
// Left-Left case (LL)
if (balance > 1 && data < root->left->data)
return rightRotate(root);
// Right-Right case (RR)
if (balance < -1 && data > root->right->data)
return leftRotate(root);
// Left-Right case (LR)
if (balance > 1 && data > root->left->data) {
root->left = leftRotate(root->left);
return rightRotate(root);
}
// Right-Left case (RL)
if (balance < -1 && data < root->right->data) {
root->right = rightRotate(root->right);
return leftRotate(root);
}
return root;
}
// Function to find the node with the minimum value in the tree
struct Node* findMinValueNode(struct Node* node) {
struct Node* current = node;
while (current->left != NULL)
current = current->left;
return current;
}
// Function to delete a node from the AVL tree
struct Node* deleteNode(struct Node* root, int data) {
if (root == NULL)
return root;
if (data < root->data)
root->left = deleteNode(root->left, data);
else if (data > root->data)
root->right = deleteNode(root->right, data);
else {
// Node with only one child or no child
if ((root->left == NULL) || (root->right == NULL)) {
struct Node* temp = root->left ? root->left : root->right;
// No child case
if (temp == NULL) {
temp = root;
root = NULL;
} else // One child case
*root = *temp; // Copy the contents of the non-empty child
free(temp);
} else {
// Node with two children: Get the inorder successor (smallest
// in the right subtree)
struct Node* temp = findMinValueNode(root->right);
// Copy the inorder successor's data to this node
root->data = temp->data;
// Delete the inorder successor
root->right = deleteNode(root->right, temp->data);
}
}
// If the tree had only one node then return
if (root == NULL)
return root;
// Update height of current node
root->height = 1 + max(getHeight(root->left), getHeight(root->right));
// Get the balance factor to check if rotation is needed
int balance = getBalanceFactor(root);
// Left-Left case (LL)
if (balance > 1 && getBalanceFactor(root->left) >= 0)
return rightRotate(root);
// Left-Right case (LR)
if (balance > 1 && getBalanceFactor(root->left) < 0) {
root->left = leftRotate(root->left);
return rightRotate(root);
}
// Right-Right case (RR)
if (balance < -1 && getBalanceFactor(root->right) <= 0)
return leftRotate(root);
// Right-Left case (RL)
if (balance < -1 && getBalanceFactor(root->right) > 0) {
root->right = rightRotate(root->right);
return leftRotate(root);
}
return root;
}
// Function for in-order traversal of the AVL tree
void inOrderTraversal(struct Node* root)
{
if(root != NULL) {
inOrderTraversal(root->left);
printf("%d ",root->data);
inOrderTraversal(root->right);
}
}
// Function to free memory by deallocating nodes
void freeMemory(struct Node* root) {
if (root == NULL)
return;
freeMemory(root->left);
freeMemory(root->right);
free(root);
}
int main() {
int choice,value;
struct Node* root = NULL;
do
{
printf("\n1. Insertion\n2. Deletion\n3. Display\n4. Exit");
printf("\nEnter your choice: ");
scanf("%d",&choice);
switch(choice)
{
case 1: printf("Enter the value to be insert: ");
scanf("%d",&value);
root = insert(root, value);
break;
case 2: printf("Enter the value to be deleted: ");
scanf("%d",&value);
root = deleteNode(root, value);
break;
case 3: inOrderTraversal(root);
break;
case 4: freeMemory(root);
break;
default: printf("\nWrong selection!!! Try again!!!");
}
}while(choice!=4);
return 0;
}
1. Insertion
2. Deletion
3. Display
4. Exit
Enter your choice: 1
Enter the value to be insert: 1
1. Insertion
2. Deletion
3. Display
4. Exit
Enter your choice: 1
Enter the value to be insert: 2
1. Insertion
2. Deletion
3. Display
4. Exit
Enter your choice: 1
Enter the value to be insert: 3
1. Insertion
2. Deletion
3. Display
4. Exit
Enter your choice: 1
Enter the value to be insert: 4
1. Insertion
2. Deletion
3. Display
4. Exit
Enter your choice: 1
Enter the value to be insert: 5
1. Insertion
2. Deletion
3. Display
4. Exit
Enter your choice: 1
Enter the value to be insert: 6
1. Insertion
2. Deletion
3. Display
4. Exit
Enter your choice: 3
1 2 3 4 5 6
1. Insertion
2. Deletion
3. Display
4. Exit
Enter your choice: 2
Enter the value to be deleted: 2
1. Insertion
2. Deletion
3. Display
4. Exit
Enter your choice: 2
Enter the value to be deleted: 3
1. Insertion
2. Deletion
3. Display
4. Exit
Enter your choice: 2
Enter the value to be deleted: 1
1. Insertion
2. Deletion
3. Display
4. Exit
Enter your choice: 3
4 5 6
1. Insertion
2. Deletion
3. Display
4. Exit
Enter your choice: 4
1) Write a program that uses functions to perform the following operations on singly linkedlist.:
i) Creation ii) Insertion iii) Deletion iv) Traversal View Solution
2) Write a program that uses functions to perform the following operations on doubly linkedlist.:
i) Creation ii) Insertion iii) Deletion iv) Traversal View Solution
3) Write a program that uses functions to perform the following operations on circular linkedlist.:
i) Creation ii) Insertion iii) Deletion iv) Traversal View Solution
4) Write a program that implement Stack (its operations) using Array View Solution
5) Write a program that implement Stack (its operations) using Linked List (Pointer) View Solution
6) Write a program that implement Queue(its operations) using Array View Solution
7) Write a program that implement Queue (its operations) using Linked List (Pointer) View Solution
8) Write a program that implements Quick sort sorting methods to sort a given list of integers in ascending order View Solution
9) Write a program that implements Merge sort sorting methods to sort a given list of integers in ascending order View Solution
10) Write a program that implements Heap sort sorting methods to sort a given list of integers in ascending order View Solution
11) Write a program to implement the tree traversal methods using Recursive View Solution
12) Write a program to implement the tree traversal methods using Non Recursive View Solution
13) Write a program to implement Binary Search Tree (its operations) View Solution
14) Write a program to implement AVL Tree (its operations) View Solution
15) Write a program to implement Red - Black Tree (its operations) View Solution
16) Write a program to implement B Trees (its operations) View Solution
17) Write a program to implement B+ Trees (its operations) View Solution
18) Write a program to implement the graph traversal methods (Breadth First Search) View Solution
19) Write a program to implement the graph traversal methods (Depth First Search) View Solution
20) Write a program to Implement a Pattern matching algorithms using Boyer- Moore View Solution
21) Write a program to Implement a Pattern matching algorithms using Knuth-Morris-Pratt View Solution