Hours,Preparation,IQ,Score
2,3,110,50
4,4,105,60
6,5,115,65
8,6,120,80
10,8,125,90
12,9,130,95
14,10,100,90
In the above CSV file,
Hours: Study hours
Preparation: Days of preparation
IQ: Intelligence score
Score: Final exam score (target variable)
To Download above CSV file : Click Here
# Load required library
if(!require(ggplot2)) install.packages("ggplot2")
library(ggplot2)
# Read the CSV file
data <- read.csv("student_scores.csv")
# View the data
cat("Dataset:\n")
print(data)
# Simple Linear Regression (Score ~ Hours)
model_linear <- lm(Score ~ Hours, data = data)
cat("\nSimple Linear Regression Summary:\n")
print(summary(model_simple))
# Plotting the regression line
plot(data$Hours, data$Score, main = "Simple Linear Regression",
xlab = "Study Hours", ylab = "Score", pch = 16, col = "blue")
abline(model_linear, col = "red", lwd = 2)
Dataset:
Hours Preparation IQ Score
1 2 3 110 50
2 4 4 105 60
3 6 5 115 65
4 8 6 120 80
5 10 8 125 90
6 12 9 130 95
7 14 10 100 90
Simple Linear Regression Summary:
Call:
lm(formula = Score ~ Hours, data = data)
Residuals:
1 2 3 4 5 6
0.2381 0.8095 -3.6190 1.9524 2.5238 -1.9048
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.3333 2.4462 16.49 7.92e-05 ***
Hours 4.7143 0.3141 15.01 0.000115 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.628 on 4 degrees of freedom
Multiple R-squared: 0.9826, Adjusted R-squared: 0.9782
F-statistic: 225.3 on 1 and 4 DF, p-value: 0.0001148
# Load required libraries
if(!require(scatterplot3d)) install.packages("scatterplot3d")
library(scatterplot3d)
# Read the dataset
data <- read.csv("student_scores.csv")
# Multiple Linear Regression model
model_multi <- lm(Score ~ Hours + Preparation + IQ, data = data)
cat("Multiple Linear Regression Summary:\n")
print(summary(model_multi))
# Predict the fitted values
predicted_scores <- predict(model_multi)
# 3D Scatter Plot: using Hours and Preparation as predictors
s3d <- scatterplot3d(data$Hours, data$Preparation, data$Score,
pch = 19, color = "blue",
xlab = "Hours", ylab = "Preparation", zlab = "Score",
main = "3D Plot: Hours & Preparation vs Score",
highlight.3d = TRUE, angle = 50)
# Add predicted values as a regression line
s3d$points3d(data$Hours, data$Preparation, predicted_scores,
col = "red", type = "l", lwd = 2)
Multiple Linear Regression Summary:
Call:
lm(formula = Score ~ Hours + Preparation + IQ, data = data)
Residuals:
1 2 3 4 5 6 7
-2.0056 3.0877 -3.3955 2.3134 2.5093 -1.7817 -0.7276
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.3470 16.9883 -0.256 0.8146
Hours 3.2929 3.4852 0.945 0.4145
Preparation 0.5131 5.7375 0.089 0.9344
IQ 0.4384 0.1453 3.017 0.0569 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.671 on 3 degrees of freedom
Multiple R-squared: 0.9778, Adjusted R-squared: 0.9556
F-statistic: 44.04 on 3 and 3 DF, p-value: 0.005578
1) Download and install R-Programming environment and install basic packages using install. packages() command in R. View Solution
2) Learn all the basics of R-Programming (Data types, Variables, Operators etc,.) View Solution
3) Write R command to
i) Illustrate summation, subtraction, multiplication, and division operations on vectors using vectors.
ii) Enumerate multiplication and division operations between matrices and vectors in R console View Solution
4) Write R command to
i) Illustrates the usage of Vector subsetting and Matrix subsetting
ii) Write a program to create an array of 3×3 matrixes with 3 rows and 3 columns. View Solution
5) Write an R program to draw i) Pie chart ii) 3D Pie Chart, iii) Bar Chart along with chart legend by considering suitable CSV file View Solution
6) Create a CSV file having Speed and Distance attributes with 1000 records. Write R program to draw
i) Box plots
ii) Histogram
iii) Line Graph
iv) Multiple line graphs
v) Scatter plot
to demonstrate the relation between the cars speed and the distance. View Solution
7) Implement different data structures in R (Vectors, Lists, Data Frames) View Solution
8) Write an R program to read a csv file and analyze the data in the file using EDA (Explorative Data Analysis) techniques. View Solution
9) Write an R program to illustrate Linear Regression and Multi linear Regression considering suitable CSV file View Solution